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Grid turbulence convected by a free stream past a rigid surface moving at  the same 
speed as the free stream is analysed by boundary-layer theory and spectral methods. 
The turbulence is assumed to be weak, i.e. uk/U,  g 1, and its Reynolds number to be 
large, i.e. uLL,/v $ 1, where u; is the r.m.s. turbulent velocity. Two regions are found 
to exist. The outer, source region Bcs) has a thickness of the order of the integral scale 
L,. Here the normal component of turbulence decreases and the lateral and streamwise 
components are amplified. The inner, viscous region has thickness [xv/U,]8, 
where x, v and ;iz, are the streamwise co-ordinate, kinematic viscosity and mean 
velocity respectively. Here the turbulent velocity decays to zero at  the surface. 
Spectra variances and cross-correlations are calculated and found to compare well 
with measurements of turbulence near moving wails by Uzkan & Reynolds (1 967) and 
Thomas & Hancock (1977). 

The results of this theory are shown to have a number of applications including the 
prediction of turbulence near wind-tunnel walls and near flat plates placed parallel to 
the flow. 

1. Introduction 
A flat rigid surface introduced into a unidirectional turbulent shear flow affects the 

turbulence by means of two mechanisms. First, the no-slip condition at the surface 
produces a mean velocity gradient which interacts with the velocity and the vorticity 
of the turbulence. Second, the velocity fluctuations of the turbulence must be zero at 
the wall. 

Most calculatior methods for turbulent flows are exclusively concerned with the 
first effect, which can be analysed and physically explained in terms of the energy 
transfer between the mean and turbulent flow fields, hence its obvious practical 
importance. This paper is exclusively concerned with the second mechanism, which 
does not lead to significant changes in the energy of the mean flow and cannot usefully 
be considered by energy arguments. However changes due to the second mechanism 
are of practical importance. 

A critical experiment to examine this particular interaction between turbulence and 
a fixed surface without the interference of a mean velocity boundary layer is to study 

t Main conclusions of this work were presented by J. C. R. Hunt at the University of 
Southampton Colloquium on Coherent Structures in Turbulence in March 1974. 
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grid turbulence near a moving wall. Such an experiment was first conceived and per- 
formed by Uzkan & Reynolds (1  967) in a small water channel. More recently it has been 
repeated in a large wind tunnel by Thomas & Hancock (1  977). 

In  this paper we develop a theory for this experiment and calculate the changes in the 
variances, spectra, cross-spectra and cross-correlations of weak homogeneous free- 
stream turbulence near a flat surface moving with the same mean speed as the free 
stream. The analysis and statistical methods used are similar to those developed by 
Hunt (1973) and Graham (1976) for turbulent flows round bluff bodies. In  the limit of 
large Reynolds number a moving wall or a bluff body acts like a sheet of random sources 
producing an irrotational flow field such that the net normal velocity is zero at  the 
surface. The moving-wall problem is simpler than the bluff-body problem because 
there is no change in the mean velocity. Therefore no distortion of the vorticity of the 
turbulence occurs and no inviscid rotational flow field is created. Sufficiently close to 
the moving surface a rotational fluctuating flow field must exist as the Jluctuating 
velocity is brought to zero. 

Irrotational velocity fluctuations are, of course, a well-known feature of turbulent 
flows near rigid surfaces. For example they exist outside a turbulent boundary layer, 
being driven by the rotational motions in the boundary layer (Phillips 1955). On the 
other hand, in the inner part of a turbulent boundary layer there are large-scale, 
relatively low frequency motions driven by the large eddies in the outer part of the 
boundary layer. These have been described as ‘inactive motions’ by Townsend (1961, 
1976) and Bradshaw (1967), who observed that they are partly made up of irrotational 
motions. But they did not develop any method for calculating these motions, nor did 
they discuss how these motions are brought to rest at  the wall. 

The main object of this paper is to provide a theory for comparison with the experi- 
mental results of Uzkan & Reynolds (1967) and Thomas & Hancock (1977). The 
application of this analysis to ‘inactive ’ motions in boundary layers and the distortion 
near rigid wind-tunnel walls of large-scale turbulence generated by grids or other 
devices will be discussed in later papers. 

2. A theory of homogeneous turbulence near a moving wall 
2.1. Assumptions and equations 

Consider the idealized flow depicted in figure 1, in which weak homogeneous turbu- 
lence swept along by a stream with mean velocity 5, is suddenly brought into contact 
with a rigid surface y = 0, x > 0 also moving a t  speed 5,. The object of the analysis 
is to demonstrate how this surface affects the turbulence. 

Initial conditions are necessary to determine the flow and it is assumed that a homo- 
geneous, statistically stationary vorticity field, created by an idealized grid at xo, 
meets the wall at  x = 0. (Downstream the flow near the wall turns out to be quite 
sensitive to the initial conditions, which must therefore be specified precisely.) 
Various means of more or less approximately achieving this situation are discussed 
later. 

A formal statement of the problem is that we have to solve 

al*/i%+(U*.V)U* = --pP-1vp+vv2u*, 
v.u* = 0, 
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FIGURE 1. Definition sketch showing the upstream grid, the moving wall, the source region 
and the viscous region So’. 

where u*, p, p and v are the velocity, pressure, density and kinematic viscosity res- 
pectively. Let o* be the vorticity V x u*. Then on expressing u* and o* in terms of 
their mean and fluctuating components, we get 

u* = D(x) + u’(x, t ) ,  o* = G(x) + o’(x, t ) ,  

where an overbar denotes a time or ensemble mean. The boundary conditions are 

ony = 0, 
as 2 + - 00, 

0 < x < m, D = (D , ,O ,O)  
(2 .3a)  
(2 .3b)  

where G, is a constant equal to the upstream velocity and the speed of the moving 
floor. A specified vorticity field o; is created upstream, so that 

o’ = o;(zg, y, z, t )  at x = xg, far upstream of x = 0. (2 .4a)  

No velocity fluctuations are assumed to exist on the moving wall, so that 

u ’ = O  on y=O,  O < x < o o .  (2 .4b)  

The following assumptions are made about the intensity and scale (or Reynolds 
number) of the turbulence: 

a = u;/;iz, -g 1, u’,L,/v % 1,  (2.51, (2.6) 

where u: = [(U11)2]4 is the root mean square of the x or longitudinal fluctuating 
velocity component u; and L, is the integral scale of u;, both being defined at x = 0. 

From the assumption of weak turbulence (2 .5) ,  the solution to (2 .1)  and (2 .2)  for the 
mean velocity D(x) in the limit a + 0 is 

D(x) = (G,, 0,O). (2:7)  

Substituting (2 .7)  into (2 .1)  and using the assumptions (2 .5)  and (2 .6) ,  the equations 
for u’ arid the fluctuating vorticity o’ become 

au‘ - au’ du’ 1 -+urn- = - = - -v  p’ + VV2U’ + 0((uL)2/Lm), 
at ax at p 

awl - am‘ do’ 
vV2o’ + O((U’,)2/L%), - 

at ax =- dt = (2 .9)  

8-2 



212 J .  C. R. Hunt and J .  M .  R.  Graham 

where the order-of-magnitude estimates are for the fluctuating nonlinear terms since 
the scale of the energy-containing eddies is of the order of L,. Under assumption 
(2.5), these terms are small compared with terms on the left-hand side of the equations. 
If assumption (2.6) is made also, (2.8) or (2.9) implies that in the absence of any 
boundaries the time scale for the variation of the velocity of any fluid element is of the 
order of L,/u', sometimes known as the 'turnover time', or the Lagrangian time 
scale (Tennekes & Lumley 1972). This time corresponds to a distance along the flow of 
L, U/u' = -EL, a turnover distance. Equations (2.8) and (2.9) also imply that for eddy 
scales (or wavelengths of Fourier components) of the order of La the viscous terms are 
negligible if the Reynolds number of the turbulence is large enough, i.e. under assump- 
tion (2.6). But over a distance of order 2ZL the viscous stresses acting on the smallest 
scales produce large changes in the energy-containing eddies. Thus over a distance 
x - xo small compared with -EL the velocity and vorticity of fluid elements far from any 
boundary do not change from their values at  xo as the elements are convected: they are 
'frozen'. Therefore over distances 0 < x - xo < gL in the free stream, 

dwL/dt  = 0,  duL/dt = 0 forall xo > O(L,). (2.10) 

Thence the outer boundary conditions on the turbulence in the region near the wall are 

as y + m ,  I w'(x, t ) +  d ( X ,  t )  = y ,  z, t - 2 / U w )  

U'(X,t)'U:,(X,t) = U;(xg,y,Z,t-xX/U,) 

(2.11) 

(2.12) 

where w; and u; are the fluctuating vorticity and velocity created by the grid. and 
U; are assumed to be statistically homogeneous in the y and z directions. 

The effect of the wall on this free-stream turbulence is to produce two distinct 
boundary layers Bv) and B(S), which we first discuss qualitatively to explain the direc- 
tion of the formal asymptotic analysis. Since u; = uj  = 0 on y = 0, w i  = 0 on y = 0, 
and a boundary layer must exist for the fluctuating vorticity. Equation (2.9) suggests 
that this has a thickness &(v) N (vx/u,)*, if 8") is small compared with a typical eddy 
size La. Thus a change in u' must occur across Bv). But since u; = 0 on y = 0, the 
continuity equation requires that just outside Be), a t  y = S("), ui - &(v)u;/x. Conse- 
quently, even if u; - uLl, it is not possible for the normal component of velocity ui to 
be restored to its upstream or far-field value just above the viscous boundary layer. 
This change must occur in a deeper layer through which u; increases from approxi- 
mately zero at y = S(v)  to its far-field value uLz at y = 8s).  The difference between the 
velocity field in this layer and that in the far field can be regarded as being produced by 
a source-like distribution -uLz on the wall. Hence we term this layer the source 
boundary layer B(8). 

2.2. The viscous and source layers 

For the analysis of B e )  we use the non-dimensional co-ordinates 

X = x/L,, 7 = y/[Lw v/U,]*,  Z = z/L,, T = tU,/L, (2.13) 

and in Bs) the definitions X ,  2 and T are unchanged while Y = y/L, .  We shall also use 
assumptions (2.5) and (2.6). The non-dimensional flow variables are 

wi = w; L, /UL,  ui = u;/u',, p = p'/(pU,uL), (2.14) 
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which are conveniently expressed as sums of different terms associated with B(") and 
B(5) : 

wi = w,i(X, T) + w(i"'(X, T )  + wy'(X, r ,  Z,T),} 
(2.15) 

ui = Umi(X, T) +u'i")(X, T) +uP'(X, 7, 2, T). 
All the non-dimensional terms in (2.15) are assumed to be O(l) ,  and X = ( X ,  Y ,  2). 

The equations for the two layers follow from the above scaling, the Navier-Stokes 
equations (2.1) and (2.2), and the results already obtained for U: and 0: in (2.12) and 
(2.11). Thus, ignoring terms O(R-4) and smaller, we find that in B(") 

(2.16a, b) 

(a/aT + apx) + o?)) = 0, (2.17) 

where Xi is the ith component of x, and in B(@) 

(2.19) 

(2.20) 

The boundary conditions on up), up), 09) and wp)  are 

w(,s)+wp) = 0 as x- foo  [from(2.ll)and(2.4a)], (2.21) 

+ up' = - uWi on y = 0, x 2 0 [from(2.4)], (2.22) 

w p ) + w p ) + ~ ,  U ? ) + U ~ ) - + O  as y-tm [from(2.10)]. (2.23) 

The variables up) and w p )  are chosen to be zero outside the viscous boundary layer. 
Therefore the last boundary condition is replaced by 

( 2 . 2 4 ~ )  

(2.24 b) 

The solution to (2.17) subject to (2.21), ( 2 . 2 4 ~ )  and (2.11) is 

my) = 0, (2.25) 

which means that in our problem the vorticity is the same in Bcs) as in the outer flow. It 
is not possible to calculate up) until the boundary conditions are known on Y = 0. This 
requires studying Bc"), where the simplest variable to calculate is w e ) .  

Solution for €3"). Since u3 = u1 = 0 at y 

~ ~ ~ ' ( X , ~ = O , Z , T ) = - ~ , ( X , ~ = O , Z , T ) = - ~ o ( O , Y = O , Z , T - X ) .  ( 2 . 2 4 ~ )  
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up) = - u,(O, Y = O,Z, T - X) erfc {r]/(4X)4]. (2.26) 

Thus we conclude that Bcv) has the form of a growing boundary layer with thickness 

8 v )  21 4(XV/;iirn)t. (2.27) 

up) and up) cannot be calculated at  this stage because the derivatives of up) at y = 0, 
which are needed to specify up) and ~ ( 3 1 ) )  a t  y = 0, are not yet known. However, having 
shown that B2)) has a boundary-layer structure, at  least for one component of vorticity, 
it is now reasonable to make the usual boundary-layer approximations for up). These 
can be checked a posteriori. 

From (2.18), we have ap/aq = 0, whence 

Therefore in B V ) ,  ap/aX and ap/aZ are determined by their values in B5) as Y -+ 0, 
which are given by (2.16). Substituting these expressions into (2.18) gives 

(2.28) 

(j = 1,3). 
where U?)+O as r]+m 

and UC”) 3 = - (urnj+u$@)(X, Y = o , Z , T )  at r] = 0 

Although up) and up) cannot be found until we know the uy), we see that up) and up) 
have typical boundary-layer profiles decaying to zero at a value of 7 approximately 
given by (2.27). 
up) can be found in terms of up) and u(31))from the continuity equation (2.19), from 

which we see that, since up) -+ 0 as 7 --f 00, 

up) = 0 in Bv). (2.29) 

(In fact up) = O(R-4iirn), but we are ignoring terms of this order.) Then applying the 
boundary condition (2.22) gives 

up(x, Y = o,z, T) = -Urn2(X, Y = o,z, T). (2.30) 

The fact that (2.30) specifies up) on Y = 0 now enables us to calculate u(is) throughout 

u(5) = -V@(X, T), (2.31) 

B5). Since up) = 0 [see (2.25)] we express as 

and since V. d5) = 0 it follows that 

The boundary conditions on @ follow from (2.31), (2.30) and (2.243), namely 

v20 = 0. (2.32) 

a@/aY = uW2(X, Y = O,Z, T) on Y = 0, X > 0, 
V@+O as Y-tm. 

} ( 2 . 3 3 ~ )  

If the mean flow is so arranged that the mean streamline which meets the surface of 
the wall Y = 0, X 2 0 also lies approximately along Y = 0 upstream of the wall, as 
shown in figure 1, then the flow field for Y 2 0 is similar to that for flow past an 
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idealized thin flat plate intersecting the turbulent flow with its leading edge at X = 0, 
Y = 0. In  such a case, which is approximately the situation for the experiments of 
Thomas t Hancock (1977) ,  the flat-plate experiments of $3.3  and possibly the experi- 
ments of Uzkan t Reynolds ( 1  967),  the appropriate upstream boundary condition is 

@ = O  on Y = O ,  X<O.  (2.33 b )  

On the other hand if the wall extends continuously up to and beyond the grid and no 
attempt is made to remove the wall layer coming off the grid as in the experiments of 
Cooke (1971)  and Petty (unpublished), a@/aY becomes a function of X ,  Z and T on 
Y = 0 which is difficult to specify in the region of the grid but which rapidly decreases 
to zero upstream of the grid, within a distance of order La. 

However ifthe turbulence is to be analysed at a station X sufficiently far downstream 
of X = 0, the upstream boundary condition becomes immaterial and the solution of 
(2 .32)  with (2 .33a)  is 

(2 .34)  
O0 ua2(X', Y' = 0, Z', T)dX'dZ' @ ( X ,  Y , Z , T )  = -- 

2n - a [ ( X  - X')Z + Y2 + (2 - 2 7 2 1 4  a 

This solution is correct except within distances of order L, from X = 0, for which the 
full solution with boundary condition (2 .336)  is given in appendix A. The full solution 
shows that the leading-edge contribution becomes negligible for X 2 1. (For further 
justification see $2 .3 . )  Given @(X, T ) ,  u(@ can be calculated from (2 .31)  throughout 
B5) in terms of um2(X, T ) .  In  particular uy) and up) at Y = 0 can be found, so that 
up) and up) can be calculated from (2.28).  

In  the limit X-too, it follows from (2 .12)  that (2 .34)  can be rewritten as 

(2.35) 

Thus for X large enough, up) as Y -+ 0 is &function of T - X and Zonly, so that ual + uf) 
and, by similar arguments, uW3 + ug) can be written as 

a@ u,,(O, 0, Z',  T - X + X " )  dX"dZ' - 
a X ( Y  = 0) = J o y  - a  [X"2 + (2 - Z')2], 

when X -+ 03. (2.36) I ual(X, O,Z, T )  +u',~)(X, O,Z, T )  = e1(Z, T - X )  
uW3(X, 0,  2, T )  + u',")(X, 0, 2, T )  = e 3 ( Z ,  T - X )  

Thence the appropriate solutions for up) and up) in (2 .28)  are 

up) = - @l{Z, T - X )  erfc { 7 / ( 4 X ) t } ,  up) = a 3 ( Z ,  T - X )  erfc { 7 / ( 4 X ) * } .  
(2 .37a)  

of the region B"), defined as the value of y at which u1 is 99 yo of 

6") = 4*O(~~/;ii,)4. (2.37b) 

Thus the thickness 
its value in B(5) as Y 3 0, is given by 

2.3. Fourier analysis of B c 5 )  

Using the same notation as in the paper of Hunt (1973),  the normalized turbulent 
velocity u is expressed in terms of two- or three-dimensional Fourier transforms. 
Near the wall, where the velocity is only homogeneous in z and t ,  
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But in the free stream, where the turbulence is homogeneous in x, y and z and is 
convected, i.e. ‘frozen’, by the mean flow, 

K is a non-dimensionaI wavenumber defined in terms of the dimensional wavenumber 
K* as 

K = K*L,, (2.40) 

so that K, is effectively a non-dimensional frequency ( = 2nnL,/U,) corresponding to 
an oscillation with frequency n. 

In  order to express the turbulence near the wall in terms of its spectrum in the free 
stream, we express Gi and 6 in terms of Ymi by the equations 

(2.41) 

which are similar to equations (4.20) in Hunt (1973). In  region BS) it is convenient to 
express the tensor in terms of two other terms as 

Mi, = Mi?) + M\$’), 

Mi.?) = 6ilexp{i(KlX+K2 Y)} 
where 

and since, from (2.31), 
ui = - aQpx i ,  

(2.42a) 

~ $ 7 )  = ( - a p 1 / a x ,  -ap , /a r ,  -i~,p,). (2.42b) 

In  Hunt (1973) it was necessary to add another tensor M$f) due to the distortion of the 
vortex lines by the variations of the mean flow around the bluff body. 

Substituting (2.39) and (2.41) into (2.34), we find that when x 9 1 

Pl = P a  = 0 
and 

(2.43a) 

This double integral can be evaluated when X --f 00 to give 

p2 = -exp{ iK1X-(K2,+K;) tY} / (K;+K;) t  (ErdBlyi et al. 1954, pp. 11, 56). 
(2.44) 

If we define AS as the difference between this asymptotic result for p2 (at large X) 
and the expression for p2 at arbitrary X, given in appendix A, then the extra contribu- 
tion due to the influence of the ‘leading edge ’ can be evaluated on Y = 0 as 

This can be expanded for large values of X to give 

(2.45) 

2 exp( - )K3)X)(K3-iK1)+ 
n+ K2,+K; AP(X, 0) = - X-4 + 0 (exp ( -  (K31X) X-#), (2.46) 
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which tends to eero as X goes to infinity, but more slowly for very wide eddies (small 
K3). However for the bulk of the energy-containing eddies with dimensions of order 
L,, when x 2 L,  the leading-edge contribution A/3 N 0, so that /3, is as given in (2.44). 

On the plane X = 0, /3 is continuous. But a t  X = 0, Y = 0 there is a square-root 
singularity in a/3/aX, which is to be expected on account of the discontinuity at  X = 0 
in the singularity distribution on Y = 0. 

From (2.45), (2.44) and (2.42), it follows that, in region B"), when 2ZL $ x 2 L, 

Mil = ail exp {i(Kl X + K ,  Y ) } ,  Mi3 = Si3exp {i(K, X + K ,  Y ) } ,  (2.47) 

2.4. Calculation of spectra and variances in B") 
For a homogeneous flow the three-dimensional Fourier transform Ymi of a turbulent 
velocity component umi is related to the three-dimensional spectrum Qrnij(K). This 
relation can be used for the free-stream turbulence only when it is effectively homo- 
geneous, i.e. when it has been convected several integral scales from thegrid. Thus, when 
x B L, and the Fourier transforms of uGi are defined within a box with sides having 
lengths L, 3, L,  qY and L, 9, we have 

where the dagger superscript denotes the complex conjugate [Hunt 1973, equation 
(3.34)]. Thence using (2.41) to express ui in terms of Ymi, and integrating withrespect to 
K ,  and K3, the normalized one-dimensional cross-spectrum for the velocities at two 
points X, = (X , ,  Y,, 2,) and xb = ( x b ,  yb, 2,) is found in terms of the normalized three- 
dimensional spectrum of the free stream [as in Hunt 1973, equations (3.36), (3.32)]: 

Substituting the results (2.47) and (2.48) for Mi, when x 9 Lm into (2.50), we find 

(2.52 a) 

that in region Bs) the cross-spectrum O,, is given by 

where 
@11(Xa) xb; K1) = @rnll(Kl) +lac+&,, 

OD iK, 
I . .= /"  ._ m / - m (K? + Kg)g exp{i[(KIXb-Kl xa) + K 3 ( 2 b - 2 , ) 1 } e x p { - ( K 2 , + K ~ ) *  y }  

x [exp { - (K!  + Kg)) yb} exp ( - iK2 Y,) @mlz - exp { - (K2, -C K;)4 Y,} 

x exp (iK, yb) @)mzl] dK, dK,, (2.52 b )  
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which is the contribution from three-dimensional cross-spectra between uml and u,,. 
Such a cross-spectrum exists in homogeneous turbulence because, even though 
uml(X) um2(X) = 0, uWl(X) u,,(X+r) += 0 when r =I= 0. The other integral in (2.52a) is 

which is the contribution to O,, solely from urn,. Similar expressionsfor the cross-spectra 
O,,, Om and O,, can be found. We concentrate in more detail on the spectra a t  one 
point. Then 

%(x; K, )  = @m11(KJ + L ( X ;  K1) + I B ~ ( X ;  K J ,  (2.63a) 
where 

[exp {i( - K2 Y ) }  @m12 - ~ X P  (iK2 Y> @m2iI 
I A 1 = i K l s m  - m  Sm - m  (KB, + K:)+ 

x exp{-(KB,+G)bY}dK8dK3 (2.633) 

( 2 . 5 3 ~ )  

(2.54a) 

and 
m exp { - 2(Kq + K;)+ Y }  Qm2, dK, dK3 

1-1 = K q  - m  1 - m  K4 + K: 
Similarly 

where 
@3,(x; K1) = @-m33(K1) + I C  + ID9 

I D = / m  J m  
K g  exp { - 2(Kf + K;)* Y }  @,,, dK, dK3. ( 2 . 5 4 ~ )  

o,,(x; KJ = 11, lm [I - 2 cos (K, Y )  exp { - (K? + K$)+ Y }  +exp {- ~ ( K B ,  +K;)*Y)] 

x @-m22 dK,dK3. (2.55) 

These results for the one-dimensional spectra in the source layer BS) (when z $. L,) 
are independent of the form of the energy spectrum tensor of the free-stream turbu- 
lence Qmi3, and give rise to some general conclusions about the turbulence in region 
Ha). 

- m  -mKB,+K; 
Also, 

--OD 

First, of course (2.55) shows that O,,(K1) = 0 on Y = 0. Since 

for any homogeneous turbulence (Batchelor 1953), it follows from (2.53)-(2.55) that 

3 

i=l  
= @mii(Ki) as Y+O, (2.56a) 
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This means that, just outside the viscous boundary layer BC") on the moving wall, the 
kinetic energy of the turbulence (for all directions) at each frequency is the same as that 
in the free stream and therefore the total kinetic energy is the same. Equally significant 
is that when Y .I; 0 the total kinetic energy is not necessarily the same as in the free 
stream. 

If the free-stream turbulence is isotropic, then 
- -  - -  
uf=uf = 1 - 5 ~ S , ~ ,  u$ = 0 as Y+O. (2.57) 

If the turbulence in the free stream is anisotropic, then depending on the ratio of 

It is also interesting to note the general forms of the spectra at very low and very high 

(2.58) 

and xLl respec- 

- -  -- ~ a , ~  to US,,, in principle U ; / U : ~  can range from 0 to o. Only (2.56b) must be satisfied. 

frequencies near the wall. From (2.52),  since IA1 = IB, = 0 when Kl = 0, 

Ql1(Kl = 0, Y )  = Omll(Kl = 0 )  = l /n.  

Therefore if the local Eulerian integral time and length scales are 
tively, where 

Tl = - 

and 

then from (2.563) 
xLl = GT1, 

= Tml(q( Y)/El)- l ,  xL1 = L m ( q (  Y)/&)-' as Y + 0. (2.59) 

Therefore for isotropic turbulence Tl( Y + 0 )  = PT,, and xLl( Y + 0 )  = #La where 
Tml is the value of I; in the free stream. From (2 .54a)  as Y +- 0, it can be shown that 
since the turbulence is homogeneous 

@,(K1+ 0 )  = Tm,/(nTm,) + @co22 (K1 + O ) ,  (2 .60a)  

where T,, is defined for u; just as Tool is for ui. For isotropic turbulence Tms/Tml = 8 
and O,,,(K1 -+ 0)  = 1/2n, so that 

and 

So, whereas the low frequency spectrum of u1 is unaffected by the wall, the spectrum of 
us is amplified most at low frequencies. 

The variation of 0, and and 
thence Omll. We consider two expressions appropriate to isotropic grid turbulence, 
both having the same form: 

@all = dbg, + K3fi (2.61) 
with 

In  the von KBrmhn form [see Hunt 1973, equations (6 .5) ,  (6 .7)]  

through the region B )  depends on the form of 

= g J K 2  Slm - KZ K,J/[g2 + Kz]fi+' (K' = K5 KJ . F.62)  

p = 9, g1 = 0.1955, g2 = 0.558, 9, = 55g1/(36m) (2.63) 

while in the form used by Townsend (1976, p. 107) 

p = 1 ,  91 = g ,  = 1 7  93 = 2g,/n.  (2.64) 
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Graphs of the one-dimensional spectra are plotted for different values of Y in figure 2. 
Note how the maximum value of O,, at  Y = 0 is at a value of K ,  ( =  2nnL,/;il,) of 
about 1-0 and not at K ,  = 0, whereas the maximum value of 0, at Y = 0 is at K ,  = 0 
and is equal to l/n, which is twice its value in the free stream, in agreement with 
(2.60 b) .  

As Y --+ 0,  if K ,  is O( 1) then O,,(K,) --+ 0. But if K ,  is large compared with Y-1 as 
Y -+ 0, then O,,(K,) remains equal to O,,,(K1). The asymptotic form for O,,(K1) can be 
found directly from the integral (2.643) by the methods explained in Hunt (1973,96) .  

When Y --+ 0 and K ,  + 0, O,,(K,) N y Yt ,  where 

(2.65) 

for the von Khrmhn spectrum, for which p = Q. Thus, as Y -+ 0 and K ,  -+ 0, 

022(Kl)/@m22(Kl) N 0*77(2n) Y t  = 4.8 Y t .  (2.66) 
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FIGURE 3. Amplification of epntra near the wall, expressed as the ratios @ll(Kl)/@mll(Kl) and 
@22(Kl)/@m22(Kl), for various values of Y (=  y/Lz). -, ,u = 4; ---, ,u = i .  

As K ,  increases @22(K1)/Om22(K1) increases, so (2.63) gives the lowest value of this 
ratio. 

In  figure 3 the amplification 011/0~11 has been plotted as a function of K ,  for various 
values of Y and for two values of p. Note that the maximum amplification occurs at  a 
wavenumber K ,  given approximately by K ,  Y N 0.3 (for p = #), so that as Y -+ 0 the 
maximum amplification occurs as K ,  + co. Note that the amplification is only weakly 
dependent on p. For example, at Y = 0.1 the maximum amplification is 1.45 for p = 1 
and 1.43 for p = g. 

The mean-square turbulent velocities are obtained by integrating O,,, O,, and 033 
with respect to K,. These integrals have been .computed and z( Y )  and q( Y )  are 
plottedin figure 4. Asymptotic expansionsfor2 andqcan  beobtainednearthe bottom 
of the region B(8). 

For the von K&rm&n spectrum (p = #), as Y+O 

For the 'Townsend' spectrum (p = 1 )  

and 
(2.69a) 

(2.693) 
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FIGURE 4. Variance of the three components of turbulent velocity in regions W and fiu) for two 
types of free-stream turbulence spectrum. In  @): -, p = 8 ;  ---, p = 1. In  B ( u ) :  (i) p = 8, 
(z /L,)  (Y/zZ- L,) = 10-4; (ii) p = - 4, ( x / L , )  (~/ii,?,) = 10-2. (5) Normal component ui; 
note log-log scale. (b) Streamwise (ui) and spanwise (u:) components; note linear-log scale. 

- 

Given (2.67) or (2.69a),2andqinregionB(")canbe calculated from (2.37). The results 
are shown in figure 4 (b) for two values of xv/Gm. Figure 4 (b) shows graphically how the 
more energy there is in the spectrum at high wavenumbers the greater2 is near Y = 0 

(i.e. z i s  greater near Y = 0 when p = Q than whenp = 1). This is fairly obvious since 
the more energy there is in the smallest eddies, the less the turbulence is affected by the 
wall. 

From (2.67) and (2.59), we find that the integral scale of the streamwise velocity 
Component is (for p = Q) xLl = Lm/(1*5-2.4Y*), 



Free-stream turbulenee near plane boundaries 227 

1.2 

. -  

0.8 

0.6 

0.4 

I 0.2 

0 I! J 0.8 
FIGURE 5. Variance of the turbulence components and the turbulent energy in region B(S). 
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source Thomas & Hancock (1977) Graham (1976) 

so that near the surface the integral scale increases very rapidly as Y increases, a 
phenomenon observed in many turbulent flows near surfaces as we note later. 

From (2.65) and (2.68),  we find that the streamwise integral scale of the vertical 
velocity component is (for p = Q) 

"L2 = ~ @ ~ ~ ( 0 ) / 2  = nYf/A2 Y f  = 2.24Y. 

xL, is also proportional to Y for the other spectrum, with p = 1. This result is found in 
many turbulent flows where the precise conditions of this theory are not satisfied. 

It is also interesting to consider how as Y increases 2 and 2 approach their asymp- 
totic values in the free-stream turbulence. Figure 4 shows that 2 and 2 first decrease 
to values below 6 and before increasing to their asymptotic values. The lowest 
they reach for p = Q is 0 . 8 6 5 ~ 2 , ~  and for p = 1 is 0.845~2,~ .  The asymptotic form of uf 
or 3 as Y+co is 

- - 

- _  -- 
u ~ / u ~ ~  = U : / U ~ ~  = 1 -A ,  Y-2e-0.74P+O(Y-4) for p = %, 

where A, = ng,/[28I'(Q)@] = 0.525. Thus 2 is less than Zl for 0.5 c Y 5 0-8 and 
then very slightly increases above El. On the other h a n d 2  effectively increases 
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FIGURE 6. Regions of validity of theories of $52 and 3.1. 

monotonically to and from its asymptotic form we find that;: is slightly greater 
than c2 for Y 2 4. The Y-4 decay law as Y -+ co is the same as that found by Phillips 
(1955) for the decay of velocity fluctuations outside a shear layer. Note that for practi- 
cal purposes and 2 reach 10 yo of their asymptotic values when Y (  = y/L,) > 0.2, 

whereas 
In  figure 5 we have plotted q2/qz as a function of Y to show how the kinetic energy of 

the turbulence is lower in region Ba) (except a t  Y = 0) than in the free stream. The 
lowest value this ratio reaches is 0.865 for a = Q and 0.845 for a = 1.  The decrease in 
the energy of the turbulence, of course, is associated with a rise in the mean pressure. 
For example, when 9' > x L, there is a gradient of the mean pressure normal to 
the wall: a@/ay = - au;/Ty. 

does not reach 10 yo of its asymptotic value until Y > 1.2. -- 

3. Applications of the theory 
3.1. Grid turbulence near a moving wall 

The theory of Q 2 has been developed for a limited range of x over which the turbulence 
does not decay significantly. To compare the theory with experiments we must esti- 
mate how the turbulence decays in the wall regions Bs) and B") relative to its decay in 
the free stream. The usual law for the decay of homogeneous grid turbulence is (Bat- 
chelor 1953, p. 103) 

d z / d t  = - A ( z ) t / l ,  (3.1) 

where 1 is some scale of the order of the integral scale. 
In  region Bs), if 6(*) < L,  we have found in $2.4 that to within 1 % and that 

L, decreases by a third, while the integral scale for us increases by about a quarter. It is 
also interesting to note that the highest wavenumber parts of the spectrum are un- 
affected in region Bs). Thus there is no apparent reason to expect the turbulence decay 
in Bs) to differ much from that in the free stream. 

Even if these two turbulence decay rates are comparable, is there any reason why 
u in Bs) should have the form given in Q 2 Z Consider the flow downstream when x > x,, 
(see figure 6). We assume that although the turbulence may have travelled a distance 
from the grid comparable with ZL the thickness of the viscous region is still small 
compared with L,, the local integral scale of the free stream. Let us calculate the flow 

_N 
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at a distance x - x,  from our new origin x,, where x - x,  is large compared with L,  but 
small compared with ZL, in other words less than an eddy life-time away from x,,. In  
that case we can again use the concepts of ‘frozen ’ turbulence. If the decay of turbu- 
lence in BCs) has been comparable with that in the free stream, then 

o N o, in for y > St*), (3.2) 

so that as in (2.31) we can express u aa 

u = U , - V @ ,  

where V x u = o, u-+  u, as Y (  = y/L,) -f a0 and V 2 @  = 0. Let (2- x,)/L, = X ;  then 
on X = 0, u - u, must be regarded as unknown, say u,(O, Y ,  2, T ) ,  but as Y -+ 0, 
u2+ 0 ,  so that a@/a Y = um2. Therefore for X > 0 

Thus when X B 1 (i.e. 9 B  x B L,), the second integral is O(X- l )  times the first. 
Consequently Q, and pi tend to the forms found in (2.34) and (2.44). Therefore we 
expect that the results of $2 .4 ,  when expressed in local free-stream variables, should 
be approximately valid down the wind tunnel.? 

In  comparing the theoretical results with experiments the first question to be 
answered is what is the relative magnitude of S(”)and L,, the thicknesses of the viscous 
and source regions. From (2.373) 

6(v) /L,  = 4*O[(x/L,) v / ( U ,  Lm)]4. (3.4) -- 
Since ut/uLl begins to be amplified onlywhen y / L ,  < 0.2, it follows that if 6(*)/L, 2 0.2 
then the irrotational amplification of the u1 component of turbulence will be masked 
by the viscous reduction. This is why Uzkan & Reynolds (1967) observed no amplifi- 
cation. The Reynolds number of their experiment was so low that 

(x/L,)  (v/U,L,) 2: 10-2 

(where x is the distance from the beginning of the moving wall), so that S(”)/L, N 0.4. 
In  their conclusions they stated that the turbulence was reduced within a growing 
‘inhomogeneity ’ layer of thickness 6 = 1.8(vx/U,)4, which is in rough agreement 
(1.8 compared with 4.0) with our calculations ! Uzkan & Reynolds’ data can be plotted 
within 12 % on a universal plot of u;/u%l as a function of y/(xv/%,)*, showing that our 
solution for the viscous layer has the right form. (Note that x < SL.) 

A possible explanation for the thickness of the viscous layer observed by Uzkan & 
Reynolds being less than that predicted by (3.4) is that, since in their case 8”) 21 6(@, 
the boundary-layer approximation a(*) < 8s) is not valid. Then some irrotational 
amplification of u1 must occur in the outer part of their viscous layer. 

If the Reynolds number is very much higher than in Uzkan & Reynolds’ experiment, 

-- 

t When 2 0.2L,, there is a significant quantity of vorticity diffused from B(V’ into the 
source lrtyer B(.). Then (3 .2)  and (3.3) cease to be valid. 
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as in the experiments of Thomas & Hancock (1977) at Imperial College, then 8") < L,. 
Typically (x /L , )  (v/E,L,) 

Thus from figure 4 (b) we should expect a maximum amplification in u:/u2,, of about 
20 yo. To achieve an amplification of 30% would require an increase in 5, Lm/v by a 
factor of 10. 

The thickness &")of the viscous layer does not increase with x indefinitely. The theory 
leading to the prediction (2.37 b) was based on eddies travelling at  the same speed as the 
mean flow. Over a distance x 2 ZL, the additional random convection of the eddies by 
the turbulence produces phase changes in the eddies travelling with the mean flow, 
Taking a single Fourier component provides an estimate for 8") for x 2 gL of 

9 x 1@), so that 

8'")/L, N 0.1. (3.5) -- 

a(") N 2 [ g L  v/;il,y 21 2[vL,/u;]it 
N 2 [v x Lagrangian time scalelit. (3.6) 

This estimate is much larger than [vL,/E]*, the thickness proposed for the viscous 
sublayer in a turbulent boundary layer by Sternberg (1962) from an analysis in which 
the convection of eddies was neglected and a single Fourier component was considered. 

The experimental results of Thomas & Hancock (1 977) for turbulence near a moving 
wall are compared with the theoretical curves in figures 2 and 5. The salient parameter 
values for their experiment are 

-- -- 
U',/u, = 0.05, 5, L,/v = 105, u2,1/t&2)it = U:J&)it = 1-09 

at ( x - x u ) / M  = 18. 

Since the boundary layer created by the rigid wall upstream of the moving wall was 
sucked off, the moving wall was the sole cause of the turbulence distortion near y = 0. 
The theory of 5 2 should be valid for a distance x from the start of the moving wall if 
x 4 2,. Now 9, is about 1-6m, so when ( x - x u ) / M  = 18, x / T L  N 0.9. Since in 
addition 8") 4 L,  is satisfied [see (3.5)], the conditions in Thomas & Hancock's experi- 
ment approximately agree with those of our theory. 

For the mean-square turbulence components in figure 5, the 3 data collapse well 
when plotted against the non-dimensional length scale Y and agree well with the 
theoretical curve. But the 3 and 3 data both show a tendency to depart from the 
theoretical curve with increasing X, the q d a t a  showing a larger amplification and the 
g a  correspondingly smaller one than that predicted by the theory. We think that the 
downstream amplification of is due to a disturbance created at the beginning of the 
moving wall being diffused outwards by the turbulence. 

Table 1 lists some of Thomas & Hancock's measurements of the amplification of 
spectra at  various frequencies in the layer adjacent to the moving wall together with 
the corresponding values given by the theory. For Y 21 0.3 the numerical agreement is 
good, but at Y 2: 0.06 the experimental values should be expected to be lower than the 
theoretical values because the latter have been computed on the basis of 8") ," 0, 
whereas in fact S(") = 0-1. 

In  figure 2 the experimental spectra are plotted on the theoretical curves. The experi- 
mental values of Oi, and Kl have been non-dimensionalized by=$ and 2L,, (the 
appropriate transverse length scale in the free stream) in the cases i = 2 and 3 to allow 
for the anisotropy of the free-stream turbulence. The measured spectrum of ell shows 
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a,%( Y = 0.07) ell( Y = 0-08) ass( Y = 0.07) 
O,,(Y = 3-57) Oll(Y = 2.84) em( Y = 2-87) Kl 

0.03 
0.3 
1.0 
3.0 

10.0 
30.0 

0.03 
0.3 
1.0 
3.0 

10.0 
30-0 

--- 
Computed Measured Computed Measured Computed Measured 

0.02 7 0.028 1.02 0.95 2.0 1.42 
0.028 0.028 1-11 1.03 1.73 1.42 
0.033 0.037 1.45 1.57 1-34 1.36 
0.11 0.1 1 1.45 1.87 1.12 0.9 
0.43 0.38 0.96 2.00 0.99 0.9 
0.89 0.59 

(inside region Ha)) 

Y (= y/L,) 21 0.07 (inside region HU)) 

Y N 0.3 
0.20 0.24 
0.19 0.25 
0-27 0.39 
0.61 0.69 
1.0 0.82 
1.0 0.9 

TABLE 1. Comparison of the values of the amplification of the spectra computed for region B(*) 
and measured by Thomas & Hmcock (1977) at ( z - z J / M  = 18. 

a bump at the high frequency end, which perhaps supports our conjecture that some 
disturbance was created a t  the upstream end of the moving wall. This bump is visible 
at y/La N 0.1, but not for y / L ,  > 0.25, so that it exists only in the viscous region. 

In  general the experimental data confirm the general features of the theory; i.e. the 
suppression of O,, as the wall is approached, which occurs mainly at  the low frequency 
end of the spectrum, while the low frequency components of O,, remain substantially 
unaltered. 

3.2.  Turbulence near a flat plate 
If a semi-infinite flat plate is placed in a turbulent flow parallel to the mean flow, then if 
6* is the displacement thickness of the boundary layer on the plate and L,  % 6* the 
turbulence above the plate will be distorted. We expect that some additional turbu- 
lence may be produced in region Bcs) by the interaction of the free-stream turbulence 
with the boundary layer. This is likely to be negligible as &*/La +- 0. 

Measurements undertaken a t  Cambridge University Engineering Department and 
plotted in figure 5 show that the variation of u;/t& with y / L ,  is slightly greater than 
the theoretical curve for region B8), by about 0.05. This difference is, we note, about 
equal to the value of &*/La (Graham 1975). 

-- 

4. Further applications of the theory 
The experiments described above, involving a moving wall or a flat plate, are rather 

specialized cases. A more usual situation which occurs in a wind tunnel is the growth of 
a tunnel wall layer in free-stream turbulence behind a grid. In  this case the wall which 
influences the turbulence is present continuously from upstream of the origin of the 
turbulence and therefore may influence the homogeneity of production. There is also, 
usually, a relatively thick mean-flow boundary layer on the wall. 



232 J .  C. R. Hunt and J .  M .  R. Graham 

Measurements have been made in such layers by Cooke (1971) and Petty (un- 
published), among others. These measurements show qualitatively some of the main 
features predicted by the theory of $2, in particular the decrease in 3 and small 
increase in 2 within the region Ba). 

The most common occurrence of turbulent flow adjacent to a wall is within turbu- 
Ient boundary layers. Bradshaw (1 967) and Townsend (1  976) have described the large- 
scale inactive motions in the inner part of a turbulent boundary layer, which are 
produced by the large eddies in the outer part of the boundary layer. These eddies are 
convected and distorted by the mean velocity shear, but are also subject to the same 
blocking action at the solid boundary as are the eddies of free-stream turbulence 
adjacent to a wall. It is therefore to be expected that some of the details of free-stream 
turbulence close to a wall predicted by the theory of 92 should also apply approxi- 
mately to the inactive motions in turbulent boundary layers. This speculation will not 
be taken further here, but we believe that the theory has useful implications in this 
context. 

5. Conclusions 
The theory presented in 5 2 gives a good prediction of the variation of u? and its 

spectrum in the region of a solid wall, when compared with measurements on a moving 
wall or a thin flat plate at moderately high Reynolds numbers. The numerical agree- 
ment of the u1 and us components, particularly their variances, is not so good, although 
qualitatively correct. In  particular, the measured values of these quantities indicate a 
streamwise development of the wall layer giving increasing amplification of 2 with 
increasing x/Lm. The measured values o f 3  show less amplification than is predicted by 
the theory. 

At lower Reynolds numbers, the relatively greater predicted thickness of the viscous 
layer B V )  explains why the data of Uzkan & Reynolds show no amplification near the 
wall. 

We are grateful to Mr P. Bradshaw for comments on a draft of this paper. The 
computing was ably performed by Mr J. Smith. 

Appendix A. Solution for the potential near the origin of Bc8) 
The potential @ satisfies 

VZ@ = 0, 

together with the boundary conditions 

a@/aY = um2 on Y = 0, X 2 0, 
@ = O  on Y = O ,  X < O ,  
@+O on Y++oo. 

Taking Fourier transforms defined as in (2.38) and (2.41) and substituting in (A 1) and 
(A 2) gives the following equations for the potential function P 2 ( X ,  Y ) :  

ay2/axz + ay,/a ~2 - ~ ; p ~  = 0, (A 3) 

(A 4) I aP2/aY = exp ( iK,  X )  on Y = 0, X 2 0, 
I42 = 0 on Y = 0, X c 0. 
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If we express B2 as the Fourier transform 

jm P(A, Y)eiAzdh 

and substitute this into (A 3), taking the appropriate solution to give p2 --f 0 as Y -+ + CQ, 

we obtain 
B(A,  Y )  = F(h)exp{ - (h2+Ki)*Y} in Y 2 0. 

Hence from (A 4) 

- m  

co 

F ( h )  (A2 + Kg)t exp ( i h X )  d h  = exp (iK, X )  for X 2 0 
-03 

and 
F(h) exp ( i h X )  d h  = 0 for X < 0. 

The solution of this pair of integral equations, by consideration of the analytic con- 
tinuation of F in the complex h plane, is 

This integral can be evaluated on the wall Y = 0, X 2 0 to give 

which can be expanded for large values of X as 

Appendix B. The thickness of region B(@ 
We develop here a model for estimating the thickness of region Bcv) a t  distances from 

the leading edge of a plate or a moving wall of the order of the eddy turnover distance 
gL. From (2.28) the normalized equation for up) is 

with boundary conditions 
uy)-tO as 7 3 ~ 0 ,  

u';)=O on 7 = o ,  X < 0. 

As EL simple model consider a single Fourier component, travelling with the mean flow 
but slowly varying in phase. A model of such a disturbance is 

.I"' = - ( u m l + u p ) ) ( X ,  Y = o , Z , T )  on 7 = 0, X > 0, 

(u,, + U P ) )  ( Y  = 0)  = uo cos (Kl  T- (K ,  + SK,) X ) ,  (B 3) 
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where uo is a constant O ( l ) ,  SK, = a f ( ( T - X ) / a )  and a = uL/'iz, (< l ) . f is  a random 
function O( 1) which is constant for an observer travelling with the mean flow and which 
has a dimensional time scale of the order of the Lagrangian time scale, since 

( T - X ) / a  = (t-x)EmLw/uL. 

Thus the boundary conditions for up) are specified in terms of functions of T - X andX. 
Let up)(X, q,Z, T )  = Gp)(X,  7,Z, f), where 2'- X = f. Then (B 1) becomes 

The asymptotic solutions are as follows 

(i) When ax( = z /SL)  < 1, 

d p )  = uo cos ( K ,  9) erf{q/(4~)4), 

up) = uo cos (K,(s, t - x)/L,) erf {3/(4vx/u,)-*), 
or 

which is of the form of (2.37). 
(ii) When ax( =x/S') = 0(1), 

U P  = uo cos ( K ,  !P + aXf(?/a) - 7(&f)t) exp { - 7riiaf@!/a)I41, 
or 

u p  = ug COS {K1(Ew t - x)/LoD + (ax/L,)f(E, t - x ) / 9 )  - Ylf(2SL v/'izm)-1]4} 

x ~ X P  { -  [~(2v/'izrn)-'I [ f ( ~ - o t - - ) / 9 1 4 } -  (B 7) 

Sincefis assumed to be O ( l ) ,  it follows from (B 6) and (B 7)  that the thickness sCv) 
of the viscous region BV) near the wall changes from 4(vx/Um)4 when x < .=YL to about 
2(SLv/U,)4 when x 2 S', as statedin (3.4) and (3.6) in $3. Most other (plausible) kinds 
of random disturbance would produce a similar thickness when x & YL. 
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